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The motion of the holonomic mechanical systems considered here takes place in a potential force field 

and is described by Lagrange equations of the second kind. It is shown that the solution of any problem 

involving these equations, whatever the conditions, is an extremal of a certain functional whose 

structure depends exclusively on the Lagrangian and on the specified conditions. 

LAGRANGE’S principle gives a variational description of the solutions of a two-point boundary- 
value problem for the Lagrange equations, given the generalized coordinates of the system at 
the initial and final instants of time. No such variational description is available for the 
solutions of other problems involving the Lagrange equations. In particular, we do not know 
whether, say, the solutions of a Cauchy problem for the Lagrange equations are extremals of 
some functional. This explains the interest in variational principles that might enable one to 
single out solutions of Lagrange’s equations satisfying arbitrary boundary, initial and 
intermediate conditions and conditions of the inclusion type. Having such principles at our 
disposal, one could envisage the use of variational methods to solve a variety of problems, 
including Cauchy problems for Lagrange’s equations. It might thus be possible to solve 
problems not by integrating the equations of motion but by determining a suitable set of 
extremals. 

1. STATEMENT OF THE PROBLEM 

Let us consider a holonomic mechanical system with n degrees of freedom in which motion 
takes place in a potential force field. In independent generalized coordinates qi (here and 
everywhere henceforth i = 1,2, . . . , n) the motion of the system may be described by a system 
of Lagrange differential equations of the second kind 

d tx(q,q’9t) 
cir 

wL4’A = 0 

aq; - aq; (1.1) 

Equations (1.1) also govern processes in electrical and electromechanical systems [l] subject 
to some idealization. 

It is assumed that the Lagrangian L(q, q’, t) is a strongly convex function of the generalized 
velocities q’, i.e. for any q, q’, c, t one has the inequality 

a>0 
i=l 

(1.2) 
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In natural systems [l], inequality (1.2) is a direct consequence of the representation L(q, q’, 
t) = T(q, q’, t)- ll(q, t), since the kinetic energy T(q, q’, t) is a polynomial of the second 
degree in q; 

where T, is a positive definite quadratic form in the generalized velocities q;. 
In some problems condition (1.2) may hold for only certain values of the generalized 

velocities. For example, if one is considering a relativistic particle moving when there is no 
field [2], which is not a natural system, then the corresponding Lagrangian 

L=-mc2 [1-(Xi2+Xi2 +Xj2)/c21H 

will be convex in the domain uz = (x;” +x: + xi’) cc*. To enable us to consider such cases, we 
shall formulate all our results in such a way that, suitably generalized, they will carry over to 
cases in which inequality (1.2) is true not for all q’ but only for those in some bounded domain. 

Lagrange’s equations (1.1) form a system of second-order ordinary differential equations 

a2L aL o 

+w-q= (1.3) 

Condition (1.2) implies that the Hessian of the Lagrangian does not vanish (det IIa*Ll 
aq;aq,’ I~j=l# 0), so Eqs (1.3) can be reduced to Cauchy normal form 

(1.4) 

The solutions of a two-point problem for Lagrange’s equations admit of a variational 
description through the use of Hamilton’s principle [l]t restricted to trajectories of system 
(1.1) joining points (a, to) and (b, tJ of (n+l)-dimensional space {q, t} 

49 = qi(rO) = Ui; q~ =qi(t,) =bi: I, >tO (1.5) 

the Hamilton action. 

W’q(t)l = 9 L(q(r), Q’(t). I)df, q(t) = II qi(r)llt, (l-6) 
b 

has a stationary value relative to its action on any other C’ curves through the same two 
points. 

It is essential for the proof of this principle that all admissible curves pass through the points 
(a, to) and (b, tl). At the same time, it would be important to have variational principles that 
determine solutions of system (1.1) with arbitrary boundary and intermediate conditions. 
Using such principles one could obtain, say, a variational description of the solutions of 
Cauchy’s problem for system (l.l), a problem with periodic solutions, etc. For example, if a 
variational description of solutions of Cauchy’s problem for the equations of motion (1.1) were 

TSee also RUMYANTSEV V. V., On the fundamental laws and variational principles of classical mechanics. Preprint 

No. 257, Inst. Problem Mekhaniki Akad. Nauk SSSR, Moscow, 1985. 
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available, the use of direct methods of the calculus of variations, would enable one to replace 
the problem of integrating Eqs (1.1) by the problem of determining appropriate extremals. 

The purpose of this paper is to show that any solution q(t) of Lagrange’s equations (1.1) 
satisfying conditions of the form 

lQ[q(r)] d 0 (j=1,2,...,k) (1.7) 

where 4, generally speaking, are non-linear functionals, is at the same time the solution of a 
certain variational problem. Arbitrary conditions may be represented in this form, including 
the initial conditions, boundary conditions, and point conditions of the general form 

&((q(T),Q’(T)) = 0, I()~‘t~~T~~...~5,~I, (v=1,2 ,..., r) (1.8) 

Conditions (1.7) also include the conditions 

xp(q0).4’(0) s 0 (p=1,2....,d: kfw. q’(dl E D(f) (l-9) 

defining a set of inequalities and inclusions, where D(r) denotes a time-dependent domain in 
the phase space (q, 4’). 

2. THE VARIATIONAL PRINCIPLE WHEN THERE ARE NO CONJUGATE POINTS 

In order to explain the basic idea of the variational principle to be established here, we will 
first consider a boundary-value problem for Eqs (1.1) with boundary conditions (1.5), which 
has a unique solution for any a, b, tl > t,,. This condition means that no interval contains 
conjugate points (in Jacobi’s sense-conjugate kinetic foci) [l, 31 (see also the paper mentioned 
in the footnote above). For such systems (1.1) the Hamilton action (1.6) restricted to a solution 
q(t) of problem (l.l), (1.5) reaches its least value relative to the action on other curves between 
points (a, t,) and (b, tl) of the extended coordinate space {q, t}. 

With every curve q(r) of class C’[r,, tl] we associate a set Z(q) =Z(q(t)} of functions 
z(t)=ll z,(t) $1 

r14.}=Iz(r)EC1~10.1,1: &)=q(to), z(t,)=q(1*)1 (2.1) 

The set Z(q) is a pencil of curves z(t) of class C’ passing through points (q(r,,), to} and (q(Q, tl} 
of the extended coordinate space (q, t}.Obviously, the initial curve q(r) E Z(q(r)] is also an 
element of this pencil. 

Consider the functional 

0 [s(t). zO)l = 1 W(q 0). Q’(I), t) - L (z (9, z’(t)* 01 c-h (2.2) 
‘0 

which is defined for functions q(t) E C’[t,, t,], z(t) E Z(q). Using the functional 8[q(t), z(t)], and 
Hamilton’s principle, we define a non-negative functional 

V[q(t)l = w?w. 2, WI = 

= max 1 (L(q,q’,r)-L(z,z’,t))dfIz(C)Ef(qt 
i ro 

(2.3) 

The existence of the maximum on the right of (2.3) is due to the absence of conjugate points, 
since we have assumed that the boundary-value z,(t) E Z(q) for system (l.l), written here in 
terms of the variables zi 
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g aiqz, z’, I) auz, z’, t) 

dt az; - azi 
= 0, z(t) E f(q) (2.4) 

has a unique solution. The condition z(r) E Z(q), together with the condition z(t) E Cl[t,, tl], 
implies that z(t,) = q(t,,), z(r,) = q(tl). 

If the system has no conjugate points, a principal Hamiltonian function W[b, t,, a, t,] exists 
expressing the value of the functional (1.6) in terms of u=q”, b=q’, to, t, on solutions of 
system (2.4) subject to conditions (1.5) [l]. Put W[b, t,, a, to]= W[q’, t,, q”, to]. As we know 
[l], the principal Hamiltonian function W[q,t, q”, to] satisfies the Hamilton-Jacobi equation 

awat + fqq, awjaq, t) = 0 (2.5) 

where, by virtue of (1.2), the Hamiltonian is defined by [4] 

For any function cp(t) E Z(q} (i.e. for dto) = q”, cp(tJ = q’), we have 

’ dWw,q”,d 
j J. dt = W[cq(t,),tl,qO,tol - Wcp(to).~,,q”,h,l = 
‘0 

(II 

= W[q’,t,,q”,r~l-W~qo,ro,qO.rol =wqlJ,~qoJol 

since wq”, to, q”, to]= 0. Let z,(t) E Z{q] denote the solution z(t) of 
conditions (2.1). Then 

system (2.4) satisfying 

W[zJt)] = ‘1 L(z,,z; .tjdr = 
‘0 

‘1 dW,;;q”Jol dr = 7 mulqy”.r,l dl 

to to 

for o(t) E Z(q). Taking these relationships into account, as well as (1.6) (2.5) and (2~9, we see 
that for any functions o(t) E Z(q} 

AW = WQWI - WbJr)l = 1 W,(cpO), ~‘0). t) - L(z,(t), z; (t). t)) di = 
b 

1 [ - i,zQi - L(Q, cp'.t) dr 3 0 (2.7) 
I 

It follows from (2.3) that 

Vlq(l)l = wlq(t)l - min WIz(t)l = W[q(t)]-W[z,(rj] 
a)EIlQt 
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This means that V[q(r)] z= 0, so q(t) E I(q). Therefore the value of the functional V[q(r)] a 0 
characterizes the difference between the Hamilton action (1.6) on an arbitrary curve q(r) and 
on the solution z,(t) of system (2.4) between the same boundary points q&J= z&J and 
q(tl)= ~(1,). Using the functional (2.3) we can obtain a variational characterization of the 
solutions q(t) of Eqs (1.1) that satisfy conditions (1.7) [5]. 

Consider the set 

r = {q(l)EC1[fO,tJr FJQ(l)]dO, j=l,2 ,...) k) (2-S) 

of all possible functions q(t) of the class C*[t,, tl] satisfying conditions (1.7). 

Theorem 1 (the maximum principle). Let the Lagrangian L(q, q’, t) be a strongly convex 
function of the variables q,’ and assume that the boundary-value problem for Fqs (1.1) with 
conditions (1.5) has a unique solution for any q”, ql, t, >to. Then system (1.1) has a solution 
G(t) that satisfies conditions (1.7) (i.e. a solution G(t) E r) if and only if the following condition 
holds 

V MO1 = min(V [q(f)] I q(r) E r) = 0 (2.9) 

or, what is the same, the minimax condition 

Proof Necessity. Let ij(t) E r be a solution of Eqs (1.1) satisfying conditions (1.7). Then by 
the condition of the theorem W[@(r)] = min(w[&f)] I q(t) E I[@)]], whence it follows that 
V[lj(t)] = 0. Since the functional V[q(r)] is non-negative, it follows that the function G(t) E r 
makes the functional V[q(t)] take its absolute minimum V[&)] = 0 so that condition (2.9) 
holds. 

Sufficiency. If condition (2.9) holds, it follows by expression (2.3) for V[q(r)] that 

In that case it follows from Hamilton’s principle that the curve G(r) is a solution of 
Lagrange’s equations (1.1) [l]. Since by assumption q(t)~ r this solution will also satisfy 
conditions (1.7). This completes the proof of Theorem 1. 

When conditions (1.7) reduce to equalities (1.5) the functional v[&)] differs from the 
Hamilton action by a constant quantity and the minimax principle directly yields Hamilton’s 
principle. 

Note that Theorem 1 remains true not only for sets r defined by inequalities (1.7) but also 
for sets defined by conditions of arbitrary form. 

3. THE MAXIMUM PRINCIPLE WHEN CONJUGATE POINTS EXIST 

We will now consider the general case of a mechanical system (1.1) for which the interval 
[a, t,] may contain conjugate points. In that case the principle of least action fails to hold and 
the Hamilton action (1.6) will have stationary values on solutions of (1.1) (1.5). Hence the 
functional V[q(t)] cannot be defined as in (2.3). To construct an analogue of v[q(t)] we shall 
use a special construction, which reduces to (2.3) when system (1.1) has a unique solution for 
Lagrange boundary conditions (1.5). It is this construction that enables us to extend the 
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maximum principle to mechanical systems with conjugate points and to give a variational 
description of solutions of Lagrange’s equations (1.1) with arbitrary conditions (1.7). 

Theorem 2. Let the Lagrangian L(q, q’, f) of system (1.1) be a strongly convex function of 
the variables q;. Then for any function y(r) E C’[t,, tl] there is some M > 0 for which one can 
construct a system of N Z= N,(y(r)) cones G,” in the extended (n + 1)dimensional coordinate 
space I4,4 

with apices at the points D,(y(r,), 7,) (see Fig. l), such that within each cone there is a central 
field, i.e. through any two points (y(r,), ri} and (y(t), z), E[z~, z~+~] inside one cone there is a 
unique solution q(i) of system (l.l), which itself remains within the cone Gy: II q’(r) Ik M. Any 
point BEG,” (i=l, 2,. . . , IV), can be connected to the apex D(y(r,), rj) of the cone by a 
unique solution q(t) of system (l.l), for which moreover Ilq’(r) Ilc M,, where Ml is some 
number (M < M1 < -). 

Before proving the theorem we need a lemma which establishes an important property of 
the Lagrange equations (1.1). If system (1.1) is solved for the highest-order derivatives, i.e. put 
in the form of (1.4), then the boundary-value problem for (1.4) with conditions (1.5) reduces to 
an integral equation 
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Differentiating with respect to t, we see that this equation becomes 

4 * = RIq’W) 

8 ne + 

(3.2) 

The function f(q, q’, t) is defined by the right-hand side of system (1.4), i.e. by Lagrange’s 
equations, and the constant term (b-a)/& -to) is determined by the boundary conditions (1.5). 
The operator R(q’(r)) will be considered for different initial points (a, to) and final points 
(b, t,). 

Lemma 1. Under the assumptions of Theorem 2, if the distance between the points (a, r,,), 
(b, r,) is sufficiently small, the operator R(q’(f)) defined in (3.2) has a unique fixed point 
q’(r) = R(q’(t)) in a sphere II q’(.) Ik M, where M c 00 is some number. 

The proof of Lemma 1 is based on a modification of the contracting mapping principle [6]. Choose an 

arbitrary number a E (0, 1) and a number M > 0 such that 

M > (I-a)-‘max(llR(O)II, Ila-bll/(tl -to)1 (3.3) 

The operator R[q*(t)} satisfies the inequality 

II R(qi (t)l- RIqi 011 II 

q(t) = a + i q.(qdz 
t0 

II X(.)ll t$Jll = max 
~Efb.01 \i=l / 

The function f(q, q’, t) satisfies a Lipschitz condition in the sphere II q’(.) 116 M with constant 

K(M)= 
llq.(.)l<fy#,4,4,0 
114(.)li~lloll+(l,-bo)M 

It follows that in the interval 

T = q -to s al[4K(t,-to)1 

(3.4) 

(3.5) 

(3.6) 

the boundary-value problem for system (1.1) with boundary conditions 

400 1 = 09 q(q) = b 

has a unique solution. Indeed, in that case, by (3.4), the operator R[q’(t)) will satisfy a Lipschitz condition 
in the sphere B = (II q’(t) IIS M, t,, =S t S T,), with a constant a, S a < 1, i.e. 

IIR(qi(.))-R(qi(.))II G alIIqi(*)-qi(.)Il (3.7) 

We will now show that R{q’(t)) has a unique fixed point q’ = R{q’] in the sphere B{ll q’ Ik M]. 
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To that end, consider the iterative sequence 

By (3.3), the first term q; of this sequence lies in B, i.e. q; E B. Suppose that for all m G s we have q; E B. 

It can be shown that this inclusion will also be true for m = s + 1. 
We will now show that the sequence (q;} converges. For any p P 1, by (3.7) 

II 4m+p (0 - 4m 0) II G aI1 4;n+p-l (I)-q,_,(f)11 d a”‘Ilq;(r)ll sa”M -3 0, m -_) - 

Hence (q:] is a Cauchy sequence. It therefore converges to a limit in the complete metric space of 

continuous functions with the uniform norm, and this limit is a fiied point of the operator R{q*(t)]. 
Since lim,,, qL(t)=q’(t) and IIq~(t)llaM, m=O, 1, 2, . . . , and the convergence is uniform, 

llq’(f)ll~ M, that is q’(t)E B{ll q’ IIS M). 
That the fixed point is unique may be proved indirectly, using the Lipschitz condition (3.7) and the 

inequality 0 c a c 1. 

Proof of Theorem 2. We will show that, under the assumptions of the theorem, one can 
construct a system of cones to cover an arbitrary curve y(t) E C’[t,, t,], in such a way that the 
principle of least action will hold in each cone, i.e. within each cone a central field of extremals 
exists. 

Let B = max,E&, ,,I II y’(t) II. For some number a E (0, l), choose a number M > /l satisfying 
inequality (3.3) 

M z (1 -a)-‘max(IIR(O)II I Q= y(to), b= y(t,)] 

In the extended coordinate space (q, t), construct an auxiliary cone G,, which completely 
covers the curve y(t) and is such that 

Go = (q-f: t~k,,f~l, iqi(r)-at cM(t-r,)) (3.8) 

Define a constant 

Ml 2 (1-W’ max(R{O)la(ro) = y(r,), (b,tl)~Go) 

By Lemma 1, if [t,, rr] is an interval satisfying the estimate (3.6) for K = K(M,), we can 
construct a cone (see Fig. 1) 

M G, = (q.t: ~E[!~,T,], iq;(r)-al SM(t-t,)) (3.9) 

in which there is a central field of extremals. The apex D,(y(r,), to) of G1” can be connected to 
any point {b(2), 2) E G1” (z > r,,) by a unique solution z(t) of the Lagrange system (2.4) or of the 
corresponding operator equation z’(r) = R{z’(t)}. This function z(r) will have a uniformly 
bounded velocity 

11 z’(l) I&,,,, I s M, 

If B@(r), 2) is a point on the curve y(t), the corresponding solution z(t) of system (2.4), 
connecting it with the apex (y&J, t,,), will satisfy the condition II z’(r) llfa I,]< M. As with (3.9) 
using Lemma 1, we can construct a cone G,” with apex at D,(y(r,), 2,). We thus obtain N, 
cones covering the curve y(t), where N,, = N,,[y(t)]= V[(f, -t&/T], the value of T is determined 
by (3.6). This completes the proof of Theorem 2. 

Inthecones G,M (s=l,2,. . . , N) that form a cover of the curve y = y(r), there is a central 
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field of extremals of the functional (1.6) [3] (with centres in D,), and so the principal 
Hamiltonian function W[y(r,), r,, q, t] is defined. Hence the principle of least action holds in 
each cone G,” 

WqSt~)l = min~Wlq(t)lIq(t)~ I,(Y(~))), 

where the set of paths Z,(y(r)) is defined by 

~,M~)~ = MOE c’: 4(2,_, 1 = Y(T,_, 1 (3.10) 

q(q) = y(r,), q(t) E G,M), s=l,X...,N, 

Everything is now ready to construct a functional that will henceforth play the role of (2.3) 
for systems with conjugate points. 

For any function q(t) E C’ we define a non-negative functional 

(3.11) 

where N a N,[q(f)] is an integer. For this functional we can prove an analogue of Theorem 1. 

Theorem 3. Let the Lagrangian L(q, q’, t) of system (1.1) be strongly convex with respect to 
qy. Then a solution G(t) E C’[r,,, tl] of system (1.1) satisfying conditions (1.7) will exist if and 
only if the following minimax condition holds 

V*f#t)l = miritV’lq(t)]lq(t) E r} = 0 (3.12) 

where 

or, written out in full 

min $ max 
duErSZ1 Z'(Y)EIs 

7 L(q(l). q’(t), t) di - 7 L(zS(t), z'"(t), t)dr = 0 
,,_, LI 1 

The number N,[z(t)] in (3.13) was defined in Theorem 2; the set Z, is defined by (3.10) for 
each cone G,” (s = 1,2,. . . , N) in the set of cones defined for any curve y(t) E C’ by (3.1). 

Proof of Theorem 3. The proof follows the same lines as that of Theorem 1, using 
Theorem 2. 

Thus, any solution G(r) of system (1.1) that satisfies conditions (1.7) may be defined by the 
relation 

V’[2j(f)l = 0, G(t) E r 

This means that all these solutions lie at the intersection of the set of functions I and the set of 
zeros of the functional V* defined in (3.11). If system (1.1) has no conjugate points, then V* 
will be identical with the functional V defined in (2.3). 

The minimax condition (3.12) enables one to solve boundary-value problems for system 
(1.1) by first applying direct variational methods and then solving a finite-dimensional 
minimax problem. 

Sometimes the domains G,M in which there are no conjugate points for system (1.1) need not 
be cones in the extended phase space. 
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For example, if the Lagrangian of the system is 

then the right-hand side of Eqs (1.4), solved for the highest-order derivatives 

will be a linear function of the variables q: (s = 1, 2,. . . , N). Hence the Lipschitz constant K(M) in (3.5) 

depends only on the restrictions on the domain G {q, t) .in the extended coordinate space and not on q’. 

For a harmonic oscillator with Lagrangian 

L(q, 4’. ry = )/2(q.2 - 02q2) 

the right-hand side of Eqs (1.4) is linear in q and q’. Therefore the domains G, = [q, t: T,_~ G tC z,, 

2, -z,_, c n1(2e.r)) may be defined as the strips in (q, t} space bounded by hyperplanes r, = const, s = 1, 
2 ,..., N with interval W(20). 

It has been proved [7] that a solution of the boundary-value problem consisting of the system q; = F,(q, 

t) and conditions (1.5) exists and is unique for 0 < r, s (4(2K)(n + 1))‘, where K = maxi, ‘I II aF,/aq, II. 

Theorem 3 yields an analogous estimate 0 < tl d (2 d( K( M)))’ , with the constant K(M) as defined in (3.5). 
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